A spinorial analogue of Aubin’s inequality

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Spinorial Analogue of Aubin’s Inequality

Let (M,g, σ) be a compact Riemannian spin manifold of dimension ≥ 7. We show that if (M,g) is not conformally flat, then there is a metric g̃ conformal to g such that the first positive eigenvalue λ̃ of the Dirac operator on (M, g̃, σ) satisfies λ̃ Vol(M, g̃) < (n/2) Vol(S). It follows from this inequality that the infimum of the first positive Dirac eigenvalue is attained in the conformal class of ...

متن کامل

A Spinorial Analogue of Aubin’s Inequality

Let (M, g, σ) be a compact Riemannian spin manifold of dimension ≥ 2. For any metric g̃ conformal to g, we denote by λ̃ the first positive eigenvalue of the Dirac operator on (M, g̃, σ). We show that inf g̃∈[g] λ̃ Vol(M, g̃) ≤ (n/2) Vol(S). This inequality is a spinorial analogue of Aubin’s inequality, an important inequality in the solution of the Yamabe problem. The inequality is already known in t...

متن کامل

A Positive Density Analogue of the Lieb-thirring Inequality

The Lieb-Thirring inequalities give a bound on the negative eigenvalues of a Schrödinger operator in terms of an L norm of the potential. These are dual to bounds on the H-norms of a system of orthonormal functions. Here we extend these bounds to analogous inequalities for perturbations of the Fermi sea of non-interacting particles, i.e., for perturbations of the continuous spectrum of the Lapl...

متن کامل

A Generalization of Constantin’s Integral Inequality and Its Discrete Analogue

Received: 21 March, 2007 Accepted: 08 May, 2007 Communicated by: S.S. Dragomir 2000 AMS Sub. Class.: 26D10, 26D15, 39A12, 45D05.

متن کامل

A q-analogue of the FKG inequality and some applications

Let L be a finite distributive lattice and μ : L → R a logsupermodular function. For functions k : L → R let Eμ(k; q) def = ∑ x∈L k(x)μ(x)q ∈ R[q]. We prove for any pair g, h : L → R of monotonely increasing functions, that Eμ(g; q) ·Eμ(h; q) ≪ Eμ(1; q) · Eμ(gh; q), where “≪ ” denotes coefficientwise inequality of real polynomials. The FKG inequality of Fortuin, Kasteleyn and Ginibre (1971) is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2007

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-007-0266-5